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ABSTRACT
In this paper, we intend to introduce a new curved surface representation that we qualify by three-polar. It is
constructed by the superposition of the three geodesic potentials generated from three reference points of the
surface. By considering a pre-selected levels set of this superposition, invariant points are obtained. A comparative
study between this representation and the unipolar one based on the level curves around one reference point is
established in the sense of the stability under errors on the reference points positions. The three-polar representation
is applied, finally, for 3D human faces description. Its accuracy is performed in the mean of the Hausdorff shape
distance.
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1 INTRODUCTION

For few years, there have been several advances in 3D
scanning technologies and tools enabling accelerated
3D graphics. Thus, 3D shape analysis and description
have become more and more popular and useful for
many varieties of visual tasks. Actually, R3 surfaces
description plays an important role for pattern recog-
nition, computer vision and 3D movement analysis.
In practice, the data obtained from 3D sensors is
generally not organized or partially organized like the
3D triangular mesh known as the conventional 3D
discrete surface representation. Therefore, one of the
major challenges faced today in the three dimensional
imaging field is the construction of a surface repre-
sentation that ensures several properties such as the
invariance under some transformations and different
parametrisations, the independence from the point of
view and the stability under some local variations in
shape. Several past works have been performed in
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order to construct 3D surface representations. In the
literature, the three dimensional surface description
methods can be classified into four major categories:
the graph based approaches, the 2D views, the trans-
form ones and those based on statistical features.
The graph based approaches have the potential to
code geometrical and topological shape properties in
an intuitive manner. In this approaches category, the
problem of comparing between shapes is transformed
onto a comparison between graphes. The usually used
descriptors are Reeb graphs [Tun05] and the skeletal
ones [Sun03].
In the two dimensional view based methods, a collec-
tion of 2D projections of the 3D object from canonical
viewpoints is realized. Planar image descriptors are
then computed as Zernike moments [Che03] and
Fourier descriptors [Vra04].
For the transform based approaches, the first step
consists on the conversion of the surface onto 3D
voxels or a spherical grid. Specific transformations are
then applied. The most known ones are 3D Fourier
[Bur92], the 3D Radon [Dar04], , the angular radial
transform [Ric05] and the uniformization [Khe08].
In the fourth description category, numerical attributes
of the 3D object (local or global) are collected. Sev-
eral past works adopted this approach for invariant
features extraction like the works of high curvature
area determination [Fau86], the extend Gaussian



image [Kan93] and the generalized shape distribution
[Liu06]. Bannour et al. [Ban00] proposed a new
surface pseudo-reparametrisation by the extraction
of a curves network determined by iso-curvature
features computation. Other methods used the local
coordinates system by the exponential map around
a point belonging to the two dimensional manifold
(unipolar representation) obtained by constructing a
set of geodesic circles relatively to a given reference
point [Sam06, Sri08, Gad12]. The stability of these
last methods remains dependent on the robustness
of the reference point extraction. In recent works,
Ghorbel et al. [Gho13] and Jribi et al. [Jri12] proposed
a new representation that they called a bipolar one.
It consists on the superposition of the two geodesic
potentials generated from two reference points instead
of one reference point. The goal was to provide a
more stability to the representations based on only one
reference point [Sam06, Sri08, Gad12] in the case of
errors on the reference point positions.

We intend in this paper to study a novel curved
surface representation, that we qualify by three-polar,
introduced in [Jri13]. It is an attempt to generalize what
is known by local coordinates around one reference
point. It is constructed from the superposition of
the three geodesic potentials generated from three
reference points of the surface. The proposed repre-
sentation is obtained by sampling the sum of these
three geodesic potentials. The stability of this novel
representation under errors on the positions of the
reference points is established. Its accuracy for 3D
human face description is performed in the mean of the
Hausdorff shape distance.

Thus, this paper will be structured as follows:
We present in the second section the mathematical
formulation of the three-polar representation. The
used similarity metric to compare between shapes
is illustrated in the third section. We establish in
the fourth section a comparative study between the
three-polar representation and the unipolar one in the
sense of the stability under errors on the positions
of the reference points. We apply finally the novel
three-polar representation for human face description
in the fifth section. The cases of correct and wrong
positions of the reference points are considered.

2 CONSTRUCTION OF THE THREE-
POLAR REPRESENTATION

Let consider here a two dimensional differential mani-
fold S, and let denote by Ur the geodesic potential gen-
erated from a reference point r of S. Ur is the function
that computes for each point p of S the length of the
geodesic curve joining p to r. For a given real value
λ , the points of S with geodesic potential values from

r equal to λ form a curve that we denote by Cλ
r . It is

called the geodesic of level λ and it belongs to the sur-
face.
We describe in this section the construction process of
the three-polar representation. It is based on the super-
position of the three geodesic potentials generated from
three reference points of S. Thus, let consider {ri, i =
1..3} three points of the 2-differential manifold S. We
denote by {Uri , i = 1..3} their corresponding potentials
functions. U3 = ∑

3
i=1 Uri is the geodesic potential con-

structed by the sum of the three geodesic potentials gen-
erated from the three reference points {ri, i = 1..3} .
Let p∗ be a point of S. Thus, there exist three real val-
ues {λ ∗i , i= 1..3} such that p∗ belongs to the three level

curves {Cλ ∗i
r , i = 1..3}. Let U∗3 = min{U3}. The points

of the surface with the same geodesic sum are invari-
ant under the rotations’ group SO(3). By selecting a
levels set of this sum, we construct a system of invari-
ant points under the same transformations group . The
representation that we propose is obtained by varying
these levels from 0 to the integer K. This integer rep-
resents the maximum value determined by the interest
region extend on the surface. Therefore, the three-polar
representation can be formulated as following:

Mk
3(S)= {p∗ ∈ S;U3(p∗)=U∗3 +

k
K
(αK−U∗3 ),k= 0..K}

(1)
Where αK is the maximum of the geodesic sum.

3 SIMLARITY METRIC
We present here the used similarity metric to compare
between different shapes. We choose the well known
Hausdorff shape distance introduced by Ghorbel in
[Gho98, Gho12]. By following the same process,
we denote by G the group representing all possible
normalized parametrisations of surfaces. It can be the
real plane R2 or the unit sphere S2. we consider the
space of all surface pieces as the set of all 3D objects
assumed diffeomorphic to G. It can be assimilated to
a subspace of L2

R3(G) formed by all square integrated
maps from G to R3. The direct product of the Euler
rotations group SO(3) by the group G , acts on such
space in the following sense:

SO(3)×G×L2
R3(G)→ L2

R3(G) (2)

{A,(u0,v0),S(u,v)} → AS(u+u0,v+ v0)
The 3D Hausdorff shape distance ∆ can be written for
every S1 and S2 belonging to L2

R3(G) and g1 and g2 to
SO(3) as follows:

∆(S1,S2) = max(ρ(S1,S2),ρ(S2,S1)) (3)

Where:

ρ(S1,S2) = sup
g1∈SO(3)

inf
g2∈SO(3)

‖ g1S1−g2S2 ‖L2 (4)



‖ S ‖L2 denotes the norm of the functional banach space
L2

R3(G).
Since the euclidean rotations preserve this norm, it is
easy to show that this distance is reduced to the follow-
ing quantity:

∆(S1,S2) = inf
h∈SO(3)

‖ S1−hS2 ‖L2 (5)

We consider after that, a normalized version of ∆ so that
its variations are confined to the interval [0,1]. In prac-
tice, this distance is obtained by using the well known
Itertive Closest Point (ICP) algorithm [Bes92].

4 STABILITY OF THE THREE-POLAR
REPRESENTATION

The stability is one of the most important properties of
a given 3D surface representation. This property is of a
paramount importance since we wish that a small local
deformation on the surface don’t lead to a big change
of the corresponding representation.
In our work, we are interested in studying a special sta-
bility under errors of the reference points positions. We
propose to make here a comparison between the three-
polar representation and the unipolar one in the sense
of the proposed stability. We used the object "Stanford
Bunny" [Tur94] which is known as a standard model for
testing graphical algorithms. The figure 1(a) illustrates
this object and the figure 1(b) shows the used three ref-
erence points chosen randomly on this object.

Figure 1: (a) The "Stanford Bunny" object. (b) The
used three reference points.

We denote by P1 the common reference point between
the three-polar representation and the unipolar one. P2
and P3 are the two other points of the three-polar repre-
sentation.
In the case of extraction errors of a reference point,
we assume that it belongs to a geodesic disc of ra-
dius equal to RGmax around its correct position. In our
work, we qualify by a reference representation the one
constructed from reference points that are all extracted
without errors. In order to establish this comparative
study, the experimentations are performed on two parts.
Each part corresponds to a variation of reference points
positions. In the first part, only the positions of the point
P1 are extracted with errors for the two representations.
In the second part, the positions of the three reference

Figure 2: The variation of the reference points. (a) the
first part of the experimentation. (b) the second part of
the experimentation.

points are incorrect for the three-polar representation.
We note that the unipolar representation and the three-
polar one undergo the same variation of the point P1 in
the two parts of experimentation. The figure 2 illus-
trates the variation areas of the reference points.
For each part of this study, the Hausdorff shape distance
is computed between:

• The three-polar representations with errors on the
positions of the reference points and the correspond-
ing reference one.

• The unipolar representation with errors on the po-
sitions of the reference point and the corresponding
reference one.

All the variations of the Hausdorff shape distance are
computed according to the position of the common
point P1 between the three-polar representation and the
unipolar one. Here, sixteen positions of the point P1 are
chosen randomly on the disc of radius value equal to
RGmax around its correct position. The figure 3 shows
the variation of this distance for the first part of study.
We can note that the three-polar representation is more
stable than the unipolar one in the case of one reference
point with errors of extraction. In fact, the distance val-
ues are smaller in the case of the three-polar represen-
tation than the unipolar one.
In the second part of study, for each wrong position
of the point P1, many incorrect positions of the points
P2 and P3 exist. For each wrong position of the point
P1, we compute the average of the Hausdorff shape dis-
tances obtained for incorrect positions of the points P2
and P3. The figure 4 illustrates the variation of the
Hausdorff shape distance for the second part of study
according to the wrong positions of the point P1. From
this figure, we can observe also that the three-polar rep-
resentation has ensured a more stability than the unipo-
lar one.



Figure 3: First part of study: Hausdorff shape distance according to the positions of the point P1 chosen randomly
on the geodesic disc of radius value equal to RGmax around the correct position of the point P1.

Figure 4: Second part of study: Hausdorff shape distance according to the positions of the point P1 chosen ran-
domly on the geodesic disc of radius value equal to RGmax around the correct position of the point P1.

5 HUMAN FACE DESCRIPTION WITH
THE THREE-POLAR REPRESENTA-
TION

The 3D face description has received a great deal of at-
tention over the last few years because of its various
application domains like biometrics which are one of
the most important. We test here the performance of
the three-polar representation on the 3D meshes of the
database Bosphorus [Sav08] in the mean of the Haus-
dorff shape distance. We use a total of ten faces that can
be grouped into two classes. A first class contains five
faces of the same person with different expressions and
a second one contains five faces of different persons.

5.1 The reference points: choice and au-
tomatic extraction

The choice of the reference points consists the first
step of the three-polar representation construction. We
choose to use the two outer corners of the eyes as
two reference points for the proposed three-polar rep-
resentation. Indeed, there is a general agreement that
eyes are the most important facial features [Cam07].
In fact, they are a crucial source of information about
the state of the human being and their appearance is
less variant to certain face changes. Since the nose
tip is commonly used for the unipolar representation
[Sam06, Sri08, Gad12], it will be also chosen as a third
reference point in the three-polar representation. We



refer to the work of Szeptycki et al. [Sze09] for the
automatic extraction of these points. This method is
based on a curvatures analysis with the use of a generic
face model generated from a set of faces of the database
Bosphorus.

5.2 3D face description: Good extraction
of the reference points

We test in this section the performance of the three-
polar representation for human face description in
the case of a good extraction of the reference points.
The figure 5 shows the three-polar representation with
different resolutions which are linked to the number of
levels in the representation construction.

Figure 5: Row 1: A neutral face. Row 2: A face with a
surprise expression. (a) The three-polar representation
with 10 levels. (b) The three-polar representation with
20 levels. (c) The three-polar representation with 30
levels.

In order to illustrate the effectiveness of the three-polar
representation, the matrix representing the pairwise
normalized Hausdorff shape distance is computed
between the ten faces. The first five faces correspond
to the first class. The rest belongs to the second class.
The figure 6 illustrates this matrix.

This matrix shows that the distances between the
faces of the same person are smaller compared with the
ones computed between faces of different individuals.

5.3 3D face description: Extraction errors
of the reference points

A comparative study between the three-polar represen-
tation and the unipolar one is established in the sense
of the 3D face description when extraction errors of the
reference points positions exist. Two study cases are
considered. For the first case, only the common point
between these two representations is extracted with er-
rors. It corresponds to the nose tip which is chosen ran-
domly in this case in a geodesic disc of radius value
equal to RGmax around its correct position. The figure 7
illustrates the variations area of the reference points in

Figure 6: Matrix of pairwise normalized Hausdorff dis-
tances between the ten facial surfaces. The first five
faces correspond to the same person while others be-
long to different individuals

Figure 7: Variation area of the reference points for the
first case of study: (a) the unipolar representation. (b)
the three-polar representation

the first case of study for the two representations.
In the second case of study, the three reference points
are chosen randomly in the three geodesic discs of ra-
dius values equals to RGmax around their correct posi-
tions for the three-polar representation. We note that
the nose tip has the same variations for the both repre-
sentations. The figure 8 illustrates the variation area of
the reference points in the second study case.

Figure 8: Variation area of the reference points for the
second case of study: (a) the unipolar representation.
(b) the three-polar representation

For each study case, the matrices of pairwise normal-
ized Hausdorff shape distance are computed for the two
representations. The results of the first study case are il-
lustrated in the figure 9.

From the observation of these two matrices (figure 9),
we can note that the three-polar representation better



Figure 9: Matrices of pairwise normalized Hausdorff distances between the ten facial surfaces with errors on the
positions of the nose tip. (a): The unipolar representation. (b): The three-polar representation.

Figure 10: Matrices of pairwise normalized Hausdorff distances between the ten facial surfaces with errors on
the positions of the nose tip for the unipolar representation and on the positions of all the reference points for the
three-polar representation. (a): The unipolar representation. (b): The three-polar representation.

caracterizes 3D faces than the unipolar one in the case
of wrong positions of only one reference point. In
fact, the distances between the faces of the same per-
son are smaller for the three-polar representation than
the unipolar one.
The figure 10 shows the two matrices corresponding to
each representation for the second study case. We can
note that the three-polar representation has shown also
better performances for the description of 3D faces in
the second case of study than the unipolar one.

6 CONCLUSION
In this paper, we have studied a novel 3D invariant
curved surface representation. It is qualified by three-
polar since it is constructed from the superposition of
the three geodesic potentials generated from three ref-
erence points of the surface. The goal was to generalize
the representation constructed from one reference point
and to ensure a more stability in the case of errors on
the reference point positions. A comparison study be-
tween the three-polar representation and the unipolar

one is established in the sense of the stability under er-
rors on the reference points positions. We applied the
novel 3D representation for 3D human face description
in the mean of the Hausdorff shape distance.
The perspectives of future works involve the applica-
tion of the three-polar representation on a larger num-
ber of 3D face surfaces. We intend also to find the op-
timal number of the levels of the novel representation.
Finally, we propose to generalize the three-polar repre-
sentation to n reference points. The value of n must be
optimal in the sense that it will not be necessary to add
other reference points.
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